Autologous Cellular Therapies in Neurosurgery Clinical Practice Dr. Vassilios Zountsas, M.D. Ph.D. Physician, Neurosurgery Specialist Director of Saint Lukas Clinic Neurosurgery Department Dr. Nikolaos G. Grigoriadis, PharmD. Ph.D. Pharmacologist, Medical Geneticist Clinical Laboratory Director of biogenea pharmaceuticals Ltd Fellow Researcher, University of Ioannina, Medical School & Aristotle University of Thessaloniki, Pharmaceutical School #### Autologous Cellular Therapies in Neurosurgery Clinical Practice - Autologous cellular therapy: Bone marrow concentrate cellular therapy - **■** Bone marrow concentrate cellular therapy : Mechanism of action - Clinical indications in neurosurgery clinical practice - Clinical endpoints in neurosurgery clinical practice - Legal, regulatory and affair parameters - Discussion Bone marrow: A niche of multipotential stem cells Bone marrow collection: A safe and painless procedure Bone marrow processing: A sterile CE bone marrow concentrate production procedure into the surgery room **Processing Fundamentals:** Clinical stem cell transplant processing typically involves the manipulation of plasma / supernatant and/or red blood cell layers, while maximizing the recovery of the buffy coat layer (containing stem cells) for infusion. Bone marrow concentrate infusion: intra venous and/or intra lumbar # **Bone marrow concentrate cellular therapy: Mechanism of action** ### Bone marrow concentrate cellular therapy: Clinical indications in neurosurgery clinical practice - 1. Parkinson's Disease - **2.** Amyotrophic Lateral Sclerosis - 3. Spinal Cord Injury - 4. Epilepsy - 5. Stroke - 6. Cerebral Pulsy / Autism #### 1. Parkinson's Disease | Name of the study
location/clinicaltrials.gov
identifier | Status
start and end of the study | Number of
recruited
patients | Type of cells/
intervention | Study design/primary
purpose | Outcome measures | Preclinical/clinical
literature | |---|--|------------------------------------|--|--|---|---| | Autologous mesenchymal stem
cell transplant for Parkinson's
disease
India/NCT00976430 | November 2011 (final data collection date for primary outcome measure) | 5 | Autologous bone marrow
derived stem cells
transplant | Endpoint classification:
safety/efficacy study
Intervention model:
single group assignment
Masking: open label | Primary: improvement in clinical condition of the patient assessed using UPDRS (UNIFIED PARKINSON'S DISEASE RATING SCALE) | Arias-Carrion and Yuan,
2009/no publications
associated to the trial | | Mesenchymal stem cells
transplantation to patients with
Parkinson's disease
Cina/NCT01446614 | Recruiting
October 2011
June 2014 | 20 | Intravenous
administration of
autologous bone marrow
derived mesenchymal
stem cells | Endpoint classification:
safety/efficacy study
Intervention model:
single group assignment
Masking: open label
primary purpose:
treatment | Primary: number of participants with adverse events 1 month after transplantation Secondary: effect assessment 1 month after transplantation and later | Park et al., 2008; Shetty
et al., 2009;
Glavaski-Joksimovic
et al., 2010; Somoza
et al., 2010/no
publications associated
to the trial | | Evaluation of safety and tolerability of fetal mesencephalic dopamine neuronal precursor cells for Parkinson's disease Republic of Korea/NCT01860794 | Recruiting
May 2013
February 2018 | 15 | Evaluation of safety and tolerability of Fetal mesencephalic dopamine neuronal precursor cells as a treatment for patients with Parkinson's disease | Intervention model:
single group assignment
Masking: single blind
(outcomes assessor)
Primary purpose:
treatment | Primary: presence or absence of cancer formation and infection within 5 years after transplantation Secondary: score UPDRS) within 5 years after transplantation. Detection of positron emission in Putamen. Dyskinesia | No publications
provided/no publications
associated to the trial | | Rajavtihi neuronal adult stem cells
project
Thailand/NCT00927108 | Unknown/July 2009
December 2011 | 10 | Oligodendrocyte
progenitor cell | Basic science | Not described | No publications
provided/no publications
associated to the trial | | Study to assess the safety and effects of autologous adipose-derived stromal in patients with Parkinson's disease Mexico/NCT01453803 | Recruiting/May 2011
June 2015 | 10 | Autologous
adipose-derived stromal
cells | Allocation:
non-randomized
Endpoint classification:
safety/efficacy study
Intervention model:
single group assignment
Masking: open label
primary purpose:
treatment | Primary: presence or absence
adverse effects, mesure of
UPDRS
Secondary: reduction of
Parkinson's medication | No publications
provided/no publications
associated to the trial | | Molecular analysis of human
neural STEM Cells
USA(company) /NCT01329926 | Enrolling by invitation/June
2011
June 2014 | 20 | The aim of this study is to develop and optimize methods to isolate, propagate and differentiate adult human neural stem cells from patients with degenerative neurological disorders like Parkinson's disease | Basic science | Isolation and propagation of
adult human neural stem
cells from patients with
Parkinson's disease | No publications
provided/no publications
associated to the trial | | Clinical trial to evaluate Bone
marrow stem cell Therapy for
progressive supranuclear Palsy a
rare form of Parkinsonism
Italy/NCT01824121 | December 2012
December 2014 | 25 | Mesenchymal stem cells
(MSCs) isolated from
Bone marrow collected
from the iliac crest | Randomized
Endpoint classification:
safety/efficacy study:
double blind
Primary purpose:
treatment | Primary: incidence of adverse
events.
Secondary: striatal density of
dopamine | No publications
provided/no publications
associated to the trial | | Derivation of induced pluripotent stem cells from somatic cells donated by patients with neurological diseases for the study of the pathogenesis of the disorders and development of novel therapies Israel/NCT00874783 | April 2009
December 2014 | 120 | Human fibroblasts and possibly other human somatic cells reprogrammed. 120 donors to cover 10 different neurodegenerative disorders based on 10 donors per disorder and 20 healthy control donors | Basic science
Preparation of iPs from
people with
neurodegenerative
pathology to study their
biological differences | Not provided | Yu et al., 2007/no
publications associated
to the trial | | Peripheral blood stem cell
collection from adult volunteers
USA/NCT00033774
The Table describes: in row 1 the nam | April 2002
last update January 2013 | Not
provided | Bone marrow stem cells collection | Basic science | Not provided | Orkin, 2000; Wei et al.,
2000; Lemischka,
2001/no publications
associated to the trial | The Table describes: in row 1 the name of the clinical trial, the location and the ClinicalTrials.gov identifier; in row 2 the Status, the Start and end of the study and the number of recruited patients; in row 3 the type of cells used and the method of administration; in row 4 the study design and the primary purpose; in row 5 the outcomes; in row 6 the preclinical and clinical literature. #### 2. Amyotrophic Lateral Sclerosis | Name of the study
location/clinicaltrials.gov
identifier | Status
start and end of the study | Number of
recruited
patients | Type of cells/
intervention | Study design/primary purpose | Outcome measures | Preclinical/clinical
literature | |---|--|------------------------------------|---|--|---|--| | Clinical trial on the use of
autologous bone marrow stem
cells in amyotrophic lateral
sclerosis
Spain/NCT01254539 | Active not recruiting
October 2010
November 2014 | 63 | Laminectomy and bone marrow stem cells transplantation Intrathecal infusion of autologous bone marrow stem cells Intrathecal infusion of placebo (saline solution) | Randomized
safety/efficacy study
Double blind
Primary purpose:
treatment | Primary: forced vital capacity,
Secondary: absence of
adverse events;
neurophysiological,
neuroradiological, and
respiratory variables | No publications
provided/no publications
associated to the trial | | Dose escalation and safety study of human spinal cord derived neural stem cell transplantation for the treatment of amyotrophic lateral sclerosis USA/NCT01730716 | Enrolling by invitation only
May 2013
April 2014 | 18 | 5 sequential cohorts with
3 subjects in each cohort.
Each cohort will follow a
dose escalation plan. No
control group is included.
All patients will received
spinal cord injections of
HSSC | Safety Study
Primery purpose:
treatment | Primary: safety, toxicity, and maximum tolerated (safe) dose of human spinal cord-derived Secondary: (1) attenuation of motor function loss; (2) maintenance of respiratory capacity; (3) stabilization of the pethology; (4) reduction of spasticity/rigidity if present; and (5) graft survival at autopsy if and when there is mortality | No publications
provided/Glass et al.,
2012 | | Human spinal cord derived neural
stem cell transplantation for the
treatment of amyotrophic lateral
solerosis (ALS)
USA/ NCT01348451 | Active not recruiting
January 2009
August 2013 | 18 | Transplantation of human
spinal cord derived neural
stem cell for the
treatment of ALS | Safety study
Primary purpose:
treatment | Primary: safety
Secondary:
(1) attenuation of motor
function loss; (2) changes in
muscle performance and pain
assessment | Robberecht and Philips,
2013/Glass et al., 2012 | | Clinical trial on the use of
autologous bone marrow stem
cells in amyotrophic lateral
sclerosis
Spain/NCT00855400 | Completed
February 2007
February 2010 | 11 | Autologous bone marrow
cells collection
Procedure: laminectomy
and bone marrow stem
cells transplantation | Safety/efficacy study
Primary purpose:
treatment | Primary: forced vital capacity
Secondary: absence of
adverse events | Blanquer et al., 2012/no
publications associated
to the trial | | The Clinical trial on the use of
umbilical cord mesenchymal stem
cells in amyotrophic lateral
sclerosis | Enrolling by invitation only
March 2012
April 2016 | 30 | Heterologous umbilical cord mesenchymal stem cells transplantation | Safety/efficacy study
Primary purpose:
treatment | Primary: forced vital capacity
and nerve functional
evaluation.
Secondary: electrophysiology
examination, blood and
urinary tests | No publications
provided/no publications
associated to the trial | | A dose-escalation safety trial for
intrathecal autologous
mesenchymal stem cell therapy in
amyotrophic lateral sclerosis
USA/NCT01609283 | Recruiting
May 2012
May 2014 | 25 | Autologous
mesenchymal stem cell
transplantation dose
escalation | Safety/efficacy study
Primary purpose:
treatment | Primary: number of patients
with dose-limiting toxicities
Secondary: adverse effects,
blood analysis, development
of cancer within 2 years after
transplantation | No publications
provided/no publications
associated to the trial | | Safety study of HLA-haplo
matched allogenic bone marrow
derived stem cell treatment in
amyotrophic lateral sclerosis
Republic of Korea/NCT01758510 | Recruiting
December 2012
June 2014 | 18 | HLA-haplo matched
allogenic bone marrow
derived stem cells | Safety/efficacy study
Primary purpose:
treatment | Primary: adverse effects
Secondary: motor
performance changes | Choi et al., 2010b; Kim
et al., 2010; Koh et al.,
2012a,b; Kwon et al.,
2012/no publications
associated to the trial | | Effect of intrathecal
administration of hematopoietic
stem cells in patients with
amyotrophic lateral sclerosis
(ALS)
Mexico/NCT01933321 | Recruiting
December 2012
January 2014 | 14 | Autologous
hematopoietic stem cells
intrathecal
transplantation | Safety/efficacy study
Primary purpose:
treatment | Primary: adverse effects | No publications
provided/no publications
associated to the trial | | Human neural stem cell | Recruiting | 18 | Intra-spinal cord delivery | Safety/efficacy study | Primary: safety of a | Robberecht and Philips. | #### 3a. Spinal Cord Injury (Cellular Therapy: Mode of Action) **Ascending Tract** Stem Cell Transplant Mitochondria Microvesicle Exosome **Trophic Factors** Scar VEGF FGF-2 HGF IGF-1 TGF-B VEGF TSG-6 PGE2 Galectin 1 & 9 IFNy **Descending Tract** #### TRANSPLANTED STEM CELLS - Homing - Surviving in hostile environment - Inducing axonal regeneration - Inducing remyelination - Improving decavitation Transplantaion of differentiated, specialized cells unlikely to accomplish all these roles Transplantation of naive stem cells producing trophic factors more likely to achieve these roles TNF-a etc... ### **3b. Spinal Cord Injury (Clinical Trials)** | Therapeutic modulator | Biological actions | Status | Study title | ClinicalTrials.gov | |---|--|-----------------------------------|---|--------------------| | Exercise | Increases skeletal muscle mass as well as cellular, biochemical, and cardiovascular functions; Improves neuroprotection, regeneration and rehabilitative processes | Currently recruiting participants | Study About Acting of Adaptive Sport in
Musculoskeletal, Cardiovascular System
and the Quality of Life of Individuals With
Spinal Cord Injury Through Biomedical
Instrumentation | NCT02177929 | | Minocycline | Neuroprotective, functional recovery,
tissue sparing, down-regulation of
pro-inflammatory species | Recruiting | Phase III Study of Minocycline in Acute Spinal Cord Injury | NCT01828203 | | Cethrin (BA-210) | Inhibitor of Rho/ROCK signalling;
reduced apoptosis; decreased glial
scarring; regenerative growth of axons | Completed | A Safety Study for Cethrin (BA-210) in
the Treatment of Acute Thoracic
and Cervical Spinal | NCT00500812 | | Erythropoletin | Anti-apoptogenic;
anti-inflammatory;
improves vascular integrity | Suspended participant recruitment | Evaluation of the Tolerability and Efficacy of Erythropoietin (EPO) Treatment in Spinal Shock: Comparative Study vs Methylprednisolone (MP) | NCT00561067 | | Riluzole | Blocks [Na [†]] influx; inhibits
glutamatergic neurotransmission;
and improves neurological outcome | Currently recruiting participants | Riluzole in Spinal Cord Injury Study
(RISCIS) | NCT01597518 | | Hypothermia | Reduces anti-inflammatory species;
decreases microglia activation;suppresses
neurotoxicity and mitigates blood spinal
cord barrier disruption; Anti-apoptogenic | Currently recruiting participants | Hypothermia Following Acute
Spinal Cord Injury | NCT01739010 | | Cellular Approach:
Macrophages | Phagocytosis of cell debris;
regeneration of axons; and
neurological benefits | Suspended participant recruitment | A Phase II Multicenter, Randomized-
Controlled Study to Evaluate the Safety
and Efficacy of Autologous Incubated
Macrophages for the Treatment of Patients
With Complete Spinal Cord injuries | NCT00073853 | | Cellular Approach:
Bone marrow derived
mesenchymal stem cells | Promote neuronal regeneration;
provide neuroprotection; replace
neurons; and neurotrophic factors | Completed | Cell Transplant in Spinal Cord Injury
Patients | NCT00816803 | # 4. Epilepsy | Name of the study
location/clinicaltrials.gov
identifier | Status start and end of the study | Number of
recruited
patients | Type of cells/intervention | Study design/primary
purpose | |---|--|------------------------------------|--|--| | Autologous bone marrow stem
cells transplantation in patients
with temporal lobe epilepsy
Brazil/NCT00916266 | Ongoing, but not recruiting participants | 20 | Transplantations with autologous bone marrow mononuclear stem cells by selective posterior cerebral artery angiography | Non-randomized
safety/efficacy study
Primary purpose:
treatment | Rows as in Table 3. Neurogenic regions Corpus callosum Subventricular zone Rostral migratory stream Dentate gyrus of hippocampus MSCs Paracrine **MSCs NSCs** activity Neural fate Neurons Neurogenesis **Astrocytes** Oligodendrocytes Gliogenesis Remyelination **Neural plasticity** #### **5b.** Stroke (Clinical Trials) | Name of the study
location/clinicaltrials.gov
identifier | Status start and end of the study | Number of recruited patients | Type of cells/intervention | Study design/primary purpose | Outcome measures | Preclinical/clinical
literature | |---|--|------------------------------|--|---|---|--| | Efficacy study of CD34 stem cell
in chronic stroke patients
China/NCT00950521 | Completed
June 2009
December 2010 | 30 | Autologous peripheral
blood CD34 stem cell/
phase II study | Randomized
Efficacy study
Double blind
Primary purpose:
treatment | Primary: NIH-stroke scale
(NIHSS)
Secondary: European stroke
scale (ESS)/ European stroke
motor subscale (EMS) | Mackie and Losordo,
2011/Chen et al., 2014 | | Autologous bone marrow stem
cells in middle cerebral artery
acute stroke treatment
Spain/NCT00761982 | Completed
September 2008
August 2011 | 20 | Autologous bone marrow
stem cells/phase II study | Non randomized/safety-
efficacy study
Double blind
Primary purpose:
treatment | Primary: absence of new neurological deficits and adverse effects during the timeframe Secondary: improvement in clinical function as assessed by the modified rankin score, barthel scale and NIH stroke scale | Mackie and Losordo,
2011/Moniche et al., 2012 | | Intravenous autologous bone
marrow-derived stem cells
therapy for patients with acute
ischemic stroke
India/
NCT01501773 | Completed
October 2008
October 2011 | 120 | Intravenous autologous
bone marrow-derived
stem cells/phase II study | Randomized/
Safety-efficacy study | Primary: barthel index score
Secondary: NIHSS score and
functional status | No publications
provided/Prasad et al.,
2012 | #### 6. Cerebral Palsy Types #### 6a. Cerebral Palsy ### A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, Paranjape A, Shetty A, Bhagwanani K, Biju H, Badhe P - <u>Stem Cells Int (2015)</u> #### **Legislation Cellular Therapies** Figure 3: General cell and tissue classification flowchart If a legislation is crossed out, it is not applicable in the considered regulatory pathway The yellow frame represents a regulatory pathway that will be discussed in chapter 3.2 *: Blood cells, if substantially manipulated or used in a non-homologous way, are classified as ATMP, § 13 AMG applies **: ATMP prepared on a non-routine basis according to specific quality standards, and used within the same Member State in a hospital under the exclusive professional responsibility of a medical practitioner, in order to comply with an individual medical prescription for a custom-made product for an individual patient # **Quality and quantity control** (ISO:9001/ ISO:15189) Η QMSCERT, ένας διαπιστευμένος οργανισμός επιθεωρήσεων τρίτου μέρους και πιστοποίησης συστημάτων διαχείρισης ISO 9001 λειτουργώντας σύμφωνα με τις απαιτήσεις του ISO 17021 πιστοποιεί ότι ο οργανισμός: #### BIOGENEA PHARMACEUTICALS E.H.E. ETAIPEIA ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ $26^{\text{HΣ}}$ ΟΚΤΩΒΡΙΟΥ 43, ΕΜΠΟΡΙΚΌ ΚΈΝΤΡΟ ΛΙΜΑΝΙ, $5^{\text{OΣ}}$ ΟΡΟΦΟΣ Τ.Κ. 546 27 ΘΕΣΣΑΛΟΝΙΚΗ, ΕΛΛΑΛΑ με πεδίο εφαρμογής: Εργαστήριο Αιματολογικών & Μικροβιολογικών Δοκιμών (Ποιοτικός & Ποσοτικός Έλεγχος Ανθρωπίνων Χονδροκυττάρων , Δενδριτικών Κυττάρων του Ανοσοποιητικού Συστήματος, Αρχέγονων Αιμοποιητικών Κυττάρων Ομφαλοπλακουντιακού Αίματος, Περιφερικού Αίματος & Μυελού των Οστών, Έλεγχος Κυκλοφορούντων Καρκινικών & Εμβρυικών Κυττάρων). Υπηρεσίες Τραπεζών Αίματος. > έχει καθιερώσει ένα σύστημα διαχείρισης ποιότητας το οποίο είναι σε συμμόρφωση με το Διεθνές Πρότυπο #### **EAOT EN ISO 9001:2008** 14 Σεπτεμβρίου, 2018 Τέλος Περιόδου Πιστοποίησης 9 Σεπτεμβρίου, 2013 Ημ/νία Αρχικής Πιστοποίηση 9 Σεπτεμβρίου, 2016 Ημερομηνία Πιστοποίησης ΙΑΓ/ΕΑ Υποτομέσς: 38.1 Για το Συμβούλιο της QMSCERT ποίηση αυτή υπόκειται σε ετήσιο έλεγχο. Η ισχός του πιστοποιητικού (3 έτη) προϋποθέτει ότι πραγματοποιούνται με επιτύχια οι ατήσιες εποτεικές επιθεορήσεις. Inspection - Certification Δεν σημαίνει και συμμόρφωση με το πρότυπο ISO 17025 QMSCERT® No 030913/4112 QMSCERT 26th October Str. 90 - GR 546 27 - THESSALONIKI - HELLAS #### **Example of bone marrow concentrate cellular therapy** Woman 40Y old, clinical indication: stroke / cerebral palsy. Combined infusion I.V. & I.L. (*Point-of-Care Stem Cell Transplant*) # Thank you!